CANON centers on a network-of-networks (NoN) model, with nodes and edges defined across different domains at multiple resolutions. We address the key challenges of modeling adversarial activities via four technical components:
The first component aims to identify node correspondence across networks. Our system augments traditional topological-based techniques by aligning networks with rich attribute information. This allows for more accurate node mapping, especially in cases where input networks are noisy, incomplete, or ambiguous. The second component enables simultaneous projection of nodes or subgraphs from multiple networks into a common embedding space.
This allows for effective matching and comparisons between data entities. The third component enables fast and approximate matching of activity templates in the NoN, which correspond to complex adversarial activity patterns in the real world. The fourth component aims to discover atypical and anomalous subgraph regions in the absence of specific activity templates.
|
|
Characterizing Disease Spreading via Visibility Graph EmbeddingIEEE BigData, GTA3 Workshop 2021 | K. Ni, J. Xu, S. Roach, T. Lu, and A. Kopylov |
|
|
DESTINE: Dense Subgraph Detection on Multi-Layered NetworksACM CIKM, 2021 | Z. Xu, S. Zhang, Y Xia, L. Xiong, J. Xu, and H. Tong |
|
|
KompaRe: A Knowledge Graph Comparative Reasoning SystemACM KDD, 2021 | L. Liu, B. Du, Y. Fung, H. Ji, J. Xu, and H. Tong |
|
|
Neural-Answering Logical Queries on Knowledge GraphsACM KDD 2021 | L. Liu, B. Du, H. Ji, C. Zhai, and H. Tong |
|
|
Semantic Guided Filtering Strategy for Best-effort Subgraph Matching in Knowledge GraphsIEEE BigData, GTA3 workshop 2020 | A. Kopylov, J. Xu, C. Ni, S. Roach, and T. Lu |
|
|
CANON: Complex Analytics of Network of NetworksIEEE BigData, 2020 | S. Roach, C. Ni, A. Kopylov, T. Lu, J. Xu, S. Zhang, B. Du, D. Zhou, J. Wu, L. Liu, Y. Yan, J. He, and H. Tong |
|
|
Local Motif Clustering on Time-Evolving Graphs [Code]ACM KDD 2020 | D. Fu, D. Zhou, J. He |
|
|
NetTrans: Neural Cross-Network TransformationACM KDD 2020 | S. Zhang, H. Tong, Y. Xia, L. Xiong, and J. Xu |
|
|
Domain Adaptive Multi-Modality Neural Attention Network for Financial Forecasting [Code]ACM WWW 2020 | D. Zhou, L. Zheng, Y. Zhu, J. Li, and J. He |
|
|
Incomplete Network Alignment: Problem Definitions and Fast SolutionsACM TKDD 2020 | S. Zhang, H. Tong, J. Tang, J. Xu, W. Fan |
|
|
Graph Convolutional Networks: A Comprehensive ReviewSpringer Computational Social Networks 2019 | S. Zhang, H. Tong, J. Xu and R. Maciejewski |
|
|
Filtering Strategies for Inexact Subgraph Matching on Noisy Multiplex NetworksIEEE BigData, GTA3 workshop 2019 | A. Kopylov, J. Xu |
|
|
G-Finder: Approximate Attributed Subgraph MatchingIEEE BigData 2019 | L. Liu, B. Du, J. Xu, H. Tong |
|
|
ORIGIN: Non-Rigid Network AlignmentIEEE BigData 2019 | S. Zhang, H. Tong, J. Xu, Y. Hu, R. Maciejewski |
|
|
Scalable Manifold-Regularized Attributed Network Embedding via Maximum Mean Discrepancy [Code]ACM CIKM 2019 | J. Wu and J. He |
|
|
Towards Explainable Representation of Time-Evolving Graphs via Spatial-Temporal Graph Attention NetworksACM CIKM 2019 | Z. Liu, D. Zhou, J. He |
|
|
MrMine: Multi-resolution Multi-network EmbeddingACM CIKM 2019 | B. Du and H. Tong |
|
|
Misc-GAN: A Multi-scale Generative Model for Graphs. FrontBig Data 2019 | D. Zhou, L. Zheng, J. Xu, and J. He |
|
|
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph ClassificationACM KDD 2019 | J. Wu, J. He, and J. Xu |
|
|
Multilevel Network Alignment [Code]ACM WWW 2019 | S. Zhang, H. Tong, R. Maciejewski, T. Eliassi-Rad |
|
|
Graph Convolutional Networks: Algorithms, Applications and Open ChallengesCSoNet 2018 | S. Zhang, H. Tong, J. Xu and R. Maciejewski |
|
|
ImVerde: Vertex-Diminished Random Walk for Learning Network Representation from Imbalanced Data [Code]IEEE BigData | J. Wu, J. He, and Y. Liu |
|
|
SPARC: Self-Paced Network Representation for Few-Shot Rare Category CharacterizationACM KDD 2018 | D. Zhou, J. He, H. Yang, and W. Fan |
|
|
FASTEN: Fast Sylvester Equation Solver for Graph MiningACM KDD2018 | B. Du and H. Tong |
|
|
Metric for Evaluating Network AlignmentACM WSDM, GTA3 workshop 2017 | J. Douglas, B. Zimmerman, A. Kopylov, J. Xu, D. Sussman, and V. Lyzinski |
|
|
Attributed Network Alignment: Problem Definitions and Fast Solutions [Code]IEEE TKDE 2018 | S. Zhang and H. Tong |
12/01/2020 | Complex Analytics of Network of Networks – CANON
01/14/2020 | CANON Enters New Phase to Increase Focus on Adversarial Activity
01/29/2018 | Seeking Weapons of Mass Terrorism in a Haystack of Big Network Data
Email: media[at]hrl.com
Media Services
HRL Laboratories, LLC
3011 Malibu Canyon Road
Malibu, CA 90265
USA
This material is based upon work supported by the United States Air Force and DARPA under contract number FA8750-17-C-0153. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force and DARPA.


